id | size | b\cap k-lowest weight | b\cap k-highest weight | Module basis | Weights epsilon coords |
---|---|---|---|---|---|
Module 1 | 6 | (0, 0, 0, -2, -2, -1) | (0, 0, 0, 0, 0, 1) | g_{6} g_{11} g_{-10} g_{16} g_{-4} g_{-24} | 2\varepsilon_{6} \varepsilon_{5}+\varepsilon_{6} -\varepsilon_{4}+\varepsilon_{6} 2\varepsilon_{5} -\varepsilon_{4}+\varepsilon_{5} -2\varepsilon_{4} |
Module 2 | 8 | (0, 0, 0, -1, -1, -1) | (0, 0, 0, 1, 1, 1) | g_{15} g_{-5} g_{20} -h_{5} h_{6}+2h_{5}+h_{4} g_{-20} g_{5} g_{-15} | \varepsilon_{4}+\varepsilon_{6} -\varepsilon_{5}+\varepsilon_{6} \varepsilon_{4}+\varepsilon_{5} 0 0 -\varepsilon_{4}-\varepsilon_{5} \varepsilon_{5}-\varepsilon_{6} -\varepsilon_{4}-\varepsilon_{6} |
Module 3 | 9 | (-1, -1, -1, -2, -2, -1) | (0, 0, 1, 1, 1, 1) | g_{19} g_{22} g_{23} g_{-21} g_{26} g_{3} g_{-17} g_{8} g_{-31} | \varepsilon_{3}+\varepsilon_{6} \varepsilon_{2}+\varepsilon_{6} \varepsilon_{3}+\varepsilon_{5} -\varepsilon_{1}+\varepsilon_{6} \varepsilon_{2}+\varepsilon_{5} \varepsilon_{3}-\varepsilon_{4} -\varepsilon_{1}+\varepsilon_{5} \varepsilon_{2}-\varepsilon_{4} -\varepsilon_{1}-\varepsilon_{4} |
Module 4 | 6 | (0, 0, 0, 0, 0, -1) | (0, 0, 0, 2, 2, 1) | g_{24} g_{4} g_{-16} g_{10} g_{-11} g_{-6} | 2\varepsilon_{4} \varepsilon_{4}-\varepsilon_{5} -2\varepsilon_{5} \varepsilon_{4}-\varepsilon_{6} -\varepsilon_{5}-\varepsilon_{6} -2\varepsilon_{6} |
Module 5 | 9 | (0, 0, -1, -2, -2, -1) | (1, 1, 1, 1, 1, 1) | g_{25} g_{-18} g_{28} g_{-14} g_{-13} g_{12} g_{-9} g_{-29} g_{-27} | \varepsilon_{1}+\varepsilon_{6} -\varepsilon_{2}+\varepsilon_{6} \varepsilon_{1}+\varepsilon_{5} -\varepsilon_{3}+\varepsilon_{6} -\varepsilon_{2}+\varepsilon_{5} \varepsilon_{1}-\varepsilon_{4} -\varepsilon_{3}+\varepsilon_{5} -\varepsilon_{2}-\varepsilon_{4} -\varepsilon_{3}-\varepsilon_{4} |
Module 6 | 9 | (-1, -1, -1, -1, -1, -1) | (0, 0, 1, 2, 2, 1) | g_{27} g_{29} g_{9} g_{-12} g_{13} g_{14} g_{-28} g_{18} g_{-25} | \varepsilon_{3}+\varepsilon_{4} \varepsilon_{2}+\varepsilon_{4} \varepsilon_{3}-\varepsilon_{5} -\varepsilon_{1}+\varepsilon_{4} \varepsilon_{2}-\varepsilon_{5} \varepsilon_{3}-\varepsilon_{6} -\varepsilon_{1}-\varepsilon_{5} \varepsilon_{2}-\varepsilon_{6} -\varepsilon_{1}-\varepsilon_{6} |
Module 7 | 6 | (-2, -2, -2, -2, -2, -1) | (0, 0, 2, 2, 2, 1) | g_{30} g_{32} g_{-7} g_{34} g_{-1} g_{-36} | 2\varepsilon_{3} \varepsilon_{2}+\varepsilon_{3} -\varepsilon_{1}+\varepsilon_{3} 2\varepsilon_{2} -\varepsilon_{1}+\varepsilon_{2} -2\varepsilon_{1} |
Module 8 | 9 | (0, 0, -1, -1, -1, -1) | (1, 1, 1, 2, 2, 1) | g_{31} g_{-8} g_{17} g_{-3} g_{-26} g_{21} g_{-23} g_{-22} g_{-19} | \varepsilon_{1}+\varepsilon_{4} -\varepsilon_{2}+\varepsilon_{4} \varepsilon_{1}-\varepsilon_{5} -\varepsilon_{3}+\varepsilon_{4} -\varepsilon_{2}-\varepsilon_{5} \varepsilon_{1}-\varepsilon_{6} -\varepsilon_{3}-\varepsilon_{5} -\varepsilon_{2}-\varepsilon_{6} -\varepsilon_{3}-\varepsilon_{6} |
Module 9 | 8 | (-1, -1, -2, -2, -2, -1) | (1, 1, 2, 2, 2, 1) | g_{33} g_{-2} g_{35} -h_{2} h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1} g_{-35} g_{2} g_{-33} | \varepsilon_{1}+\varepsilon_{3} -\varepsilon_{2}+\varepsilon_{3} \varepsilon_{1}+\varepsilon_{2} 0 0 -\varepsilon_{1}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{3} -\varepsilon_{1}-\varepsilon_{3} |
Module 10 | 6 | (0, 0, -2, -2, -2, -1) | (2, 2, 2, 2, 2, 1) | g_{36} g_{1} g_{-34} g_{7} g_{-32} g_{-30} | 2\varepsilon_{1} \varepsilon_{1}-\varepsilon_{2} -2\varepsilon_{2} \varepsilon_{1}-\varepsilon_{3} -\varepsilon_{2}-\varepsilon_{3} -2\varepsilon_{3} |
Module 11 | 1 | (0, 0, 0, 0, 0, 0) | (0, 0, 0, 0, 0, 0) | h_{5}+2h_{4}+h_{3}-h_{1} | 0 |
Module 12 | 1 | (0, 0, 0, 0, 0, 0) | (0, 0, 0, 0, 0, 0) | h_{6}-2h_{4} | 0 |